N2 - 7259/

_ZC AND S

/(S(\(‘C&EI\\

NASA CONTRACTOR

REPORT

0

-}

(=

-

- v prrpee een

<t ™ T Y B
= | W W o

THEORETICAL STUDY OF CORRUGATED PLATES:

SHEAR STIFFNESS OF A TRAPEZOIDALLY
CORRUGATED PLATE WITH DISCRETE
ATTACHMENTS TO A RIGID FLANGE
AT THE ENDS OF THE CORRUGATIONS

by Chen-liau Hsiao and Charles Libove

Prepared by
SYRACUSE UNIVERSITY

[ & R T W
Syracuse, N.¥Y. 13210

for Langley Research Center

NATIONAL AEROMNAUTICS AND SPACE ADMINISTRATION - WASHINGTON, D. C. -

NASA CR-1966

FEBRUARY 19/2




1. Report No. 2. Government Accession No, 3. Recipient’s Catalog No.
NASA CR-1966

4, Title and Subtitle 5. Report Date
THEORETICAL STUDY OF CORRUGATED PLATES: SHEAR STIFFNESS OF A February 1972
TRAPEZOIDALLY CORRUGATED PLATE WITH DISCRETE ATTACHMENTS TO A RIGID
FLANGE AT THE ENDS OF THE CORRUGATIONS

6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.
Chen~liau Hsiao and Charles Libove MAE 1833-T3
10. Work Unit No.
9. Performing Organization Name and Address 134-14-05-02
Syracuse University 11. Contract or Grant No, !

Department of Mechanical & Aerospace Engineering

Syracuse, NY 13210 NGR 33-022-115

13. Type of Report and Period Cqvered

12. Sponsoring Agency Name and Address Contractor Report

National Aeronautics and Space Administration

14. Sponsoring Agency Code
Washington, DC 20546

15. Supplementary Notes

16. Abstract .
Analysis and numerical results are presented for the elastic shear stiffness of a corrugated shear

web with a certain type of discrete af_,ta.cknnents at the ends of the trough lines of the corrugations,
namely point attachments to a rigid flange which interferes with the deformations of the end cross
sections by preventing downward movement but permitting upward (lifting off) movement.

The analysis is based on certain assumed modes of deformation of the cross sections in conjunction
with the method fo minimum total potential energy and the calculus of variations in order to obtain
equations for the manner in which the assumed modes of deformation vary along the length of the
corrugation.

The numerical results are restricted to the case of equal-width crests and troughs but otherwise apply
to a wide variety of geometries. They are in the form of graphs which give the overall shear stiffness
as a fraction of the overall shear stiffness that could be obtained by having continuous attachment
at the ends of the corrugations.

17. Key Words (Suggested by Author(s}) 18. Distribution Statement

Corrugated shear webs
Shear stiffness Unclassified - Unlimited

Discrete attachments

19. Security Classif. (of this report) 20. Security Classif. {of this page) 21, No. of Pages 22, Price”
Unclassified Unclassified 70 $5.00

For sale by the National Technical Information Service, Springfield, Virginia 22151



PREFACE

This is the third in a series of reports dealing with the
behavior of corrugated plates. The two previous reports in the series
are:

"Theoretical Study of Corrugated Plates: Shearing of a Trapezoidally

Corrugated Plate with Trough Lines Held Straight," by Chuan-jui Lin
and Charles Libove. Syracuse University Research Institute
Report MAE 1833-T1, May 1970. (NASA CR-1749)

"Theoretical Study of Corrugated Plates: Shearing of a Trapezoidally
Corrugated Plate with Trough Lines Permitted to Curve,' by Chuan-jui Lin
and Charles Libove., Syracuse University Research Institute

Report MAE 1833-T2, June 1970, (NASA CR-1750)
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THEORETICAL STUDY OF CORRUGATED PLATES:
SHEAR STIFFNESS OF A TRAPEZOIDALLY CORRUGATED PLATE WITH
DISCRETE ATTACHMENTS TO A RIGID FLANGE AT THE ENDS
OF THE CORRUGATIONS

By

Chen-liau Hsiao* and Charles Libove*#*
Syracuse University

SUMMARY

Analysis and numerical results are presented for the elastic
shear stiffness of a corrugated shear web with a certain type of discrete
attachments at the ends of the trough lines of the corrugations, namely
point attachments to a rigid flange which interferes with the deforma-
tions of the end cross sections by preventing downward movement but
permitting upward (lifting off) movement,

The analysis is based on certain assumed modes of deformation
of the cross sections in conjunction with the method of minimum total
potential energy and the calculus of variations in order to obtain
equations for the manner in which the assumed modes of deformation vary
along the length of the corrugation.

The numerical results are restricted to the case of equal-width crests
and troughs but otherwise apply to a wide variety of geometries. They are
in the form of graphs which give the overall shear stiffness as a fraction «
of the overall shear stiffness that could be obtained by having continuous :

attachment at the ends of the corrugationms.

*Graduate Assistant
**Professor of Mechanical and Aerospace Engineering




INTRODUCTION

Corrugated plates have been proposed for use as shear webs in
high-speed aircraft, because their accordion-like ability to expand and
contract can circumvent the high thermal stresses that might otherwise
occur due to large temperature differences between the inner and outer
* structure of the aircraft. In such applications discrete, rather than
continuous, attachments may exist between the ends of the corrugations
and the neighboring structure (e.g., the spar caps). It thus becomes
important to be able to predict the stresses, deformations, and overall
shear stiffness of a corrugated shear web with various kinds of discrete
attachments at the ends of the corrugations. The present paper con-
tinues the work of an earlier paper (ref. 1) in dealing with this problem,
taking up a type of discrete end attachment condition not considered
therein.

The type of cross section considered in reference 1 and the present
paper is the trapezoidal cross section shown in figure 1. The end attach-
ments considered in reference 1 are shown schematically in figure 2. They
are: (a) point attachments at the ends of the trough lines, (b) point
attachments at the ends of the crest lines and the trough lines, and (c)
wide attachments clamping the entire widths of the trough ends to a rigid
flange. The point attachments referred to above are idealizations intended
to represent the restraint furnished by small attachments, such as spot
welds or clips. They are assumed to provide restraint against displace-
ment, but to offer no resistance to rotation.

The present paper considers an end attachment intermediate to those

of figures 2(a) and 2(c), in regard to the severity of the interference




it provides to the deformation of the end cross sections in their own
planes. It consists of point attachments to a rigid flange at the
ends of the trough lines, as shown schematically in figure 3. The
rigid flange prevents downward, but not upward, deflection of the
ends of the corrugations. The point attachments in the present
analysis are intended to represent attachments, such as rivets or spot
welds, which are small in comparison with the widths of the troughs
in which they lie. Actual small attachments will, of course, have
finite, rather than zero, width and will provide some localized res-
traint against rotation. Both of these factors are neglected in the
present analysis,

Linear elasticity, isotropy of the material, and small deforma-
tions are assumed throughout. The width of the plate (i.e., the
dimension perpendicular to the direction of the corrugations is assumed
to be infinite, so that all the corrugations deform in an identical
manner, and the analysis may then be based on a single corrugation.
Thus the present analysis will be applicable to finite-width plates if
the width is sufficiently great for the attachments along the sides to
have a negligible effect on the deformations of most of the corrugations.
At the present time, it is difficult to state a criterion for judging
when this condition is satisfied.

Acknowledgement. - The work reported herein was done under grant.

NGR 33-022-115 from the National Aeronautics and Space Administration.
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SYMBOLS

one-half the length of the corrugations (see fig. 4)
one-half the width of a trough (see fig. 1)
width of a crest (see fig. 1)

shear force on cross sections parallel to the corrugation
direction (see fig. 4)

same as F, but for the case of continuous attachment at
the ends of the corrugations

shear modulus

effective shear modulus of corrugated plate
height of corrugation (see fig. 1)

width of inclined plate elements (see fig. 1)
shear stiffness, F/2uo

shear stiffness for the case of continuous attachment at
the ends of the corrugation, F'/2u°

length of corrugations, 2b

numerical exponents

pitch of the corrugation (see fig. 1)

developed width of one corrugation, 2e + f + 2k
sheet thickness (see fig. 1)

one-half the relative longitudinal displacement of two adjacent
trough lines (see fig. 4)

coordinate (see fig. 4)

overall shear strain, 2uo/p (see fig. 4)

angle of sloping plate elements with respect to horizontal (see fig. 1)

dimensionless stiffness parameter, K/K'




METHOD OF ANALYSIS

Statement of problem. - Figures 4(a) and 4(b) show an end

view and a top view, respectively, of the unsheared corrugated plate,
and 4(c) shows a top view of the sheared plate. The shearing is
accomplished by rotating the flanges through the small angle y so as to
produce a relative longitudinal sliding of the imaginary lines such

as mn and pq connecting the frontward (z=b) and rearward (z=-b)
attachment points. The relative advance of any one such line with
respect to its rightward neighbor will be denoted by 2u°. This
relative sliding and the apparent or overall shear strain y are

related by

Y = (1)

It should be noted that the material lines such as mn and pq of

figure 4(b) do not remain straight during the shearing of the plate.
They, along with the other generators, can be expected to curve, as
shown in figure 4(c).

A complete descriptioh of the problem requires a statement as to
whether or not the flanges are permitted to move relative to each other
in the z-direction during the shearing of the plate -- i.e., whether
or not the distance between points such as m and n is allowed to
change when the plate is sheared. There are two limiting assumptions
that can be made in this regard: Either the flanges are not permitted
any relative z-wise movement, in which case external forces may be
required to prevent such movement, which forces would put the corrugation

cross sections (perpendicular to the z-axis) into tension or compression;



or the flanges are permitted freely to separate or come together, in
which case there is no resultant tension or compression on the cross
section of any corrugation. The latter condition will be assumed
in the present paper, because it is felt to be more representative
of the state of affairs in an aircraft wing, in which the flanges are
essentially the top and bottom spar caps, whose relative movement
toward or away from each other is only feebly prevented by the ribs
and their own bending stiffnesses.

All longitudinal cross sections will carry the same shear force
F, shown in figure 4(c), which can be expected to be proportional to
u,- Thus

F = Kno 2)

and the proportionality constant K 1is a measure of the overall

shear stiffness of the corrugated plate. The objective of the present
analysis is to determine K or any equivalent stiffness measure. The
following sections explain how this objective is accomplished.

Idealization of the rigid flanges. - Figure 5(a) shows, by

means of the dotted lines, the deformation of the end cross section

(z=b) of a corrugated plate sheared as in figure 4(c), with point attach-
ments at the ends of the trough lines, but without the rigid flanges.

This problem was solved in reference 1. It is seen that the corners
labeled A deflect downward, while the other corners of the troughs de-
flect upward. (At the opposite end (z=-b) the corner deflections are

the reverse of those at z=b; this may be seen by referring to fig. 6(a). )
The effect of the rigid flange is to prevent any downward deflection.

Thus the cross-sectional deformation at z=b for the case of interest here




may look as shown in figure 5(b). For the sake of simplifying the
analysis, the constraint furnished by the rigid flange will be re-
placed by the nearly equivalent constraint shown in figure 5(c).
That is, the constraint against dowvmward deflection is assumed to be
localized at certain corners (those which would deflect downward

if the flange were not there), rather than distributed across the
entire width of each trough. This represents a slight relaxation

of the actual constraint, leading perhaps to a slight under-estimate
‘of the overall shear stiffness.

Solution by means of .superposition. - Summarizing the above dis-

cussion, the problem as it now stands is to analyze a corrugated plate
sheared as shown in figure 4(c), having point attachments at the ends

of the trough lines, localized constraints against downward deflection
at the corners labeled A in end cross section z=b, and similar localized
constraints against downward deflection at the adjacent corners in the
cross section at. the .other end, z=-b.

The solution of this problem can be obtained by superimposing the
solutions of two other problems, which are shown in figures 6(a) and (b).
In the first of these problems (fig. 6(a)) the localized constraints are re-
moved and the plate is sheared as in figure 4(c). This is the problem
solved in reference 1. During the shearing, the corners labeled A will

deflect downward an amount proportional to u_, these deflections are there-

0
fore labeled oju_ in figure 6(a). The shear force F; required to
shear the plate will also be proportional to U, , and it is therefore
denoted by Kju  in figure 6(a). Both the influence coefficient a; and
the stiffness K; are, in principle, obtainable from the solution of this

problem in reference 1.

In the second problem (fig. 6(b)), which has not previously been



solved, the plate is loaded with concentrated upward forces of
magnitude 2P at the corners labeled A, while lines such as mn

and pq are prevented from shifting longitudinally with respect

to each other (i.e., any overall shear strain is suppressed) but

not prevented from lengthening or shortening.* Under this loading
there will be upward deflections of magnitude C,P at the loaded
corners and shearing forces of magnitude ¥, = aoP on all longitudinal
cross sections, the latter representing whatever shear force may be
necessary to prevent overall shear deformation under this loading. The
determination of the compliance C, and influence coefficient a, re-
quires an analysis of the problem represented by figure 6(b).

By superimposing figures 6(a) and 6(b), one obtains the original
problem of a plate with an imposed overall shear strain of 2uj; per corru-
gation and concentrated reactions of magnitude 2P due to the presence
of the rigid flanges, idealized as in figure 5(c). The magnitude of P
is defined by the requirement of zero vertical deflection at the corners

labeled A; that is ayu - CyP = 0, whence
P = GIUO/CZ (3)

The shear force F 1is obtained by adding the shear forces

F; and F; of the two substitute problems (figs. 6(a) and (b) ). Thus

*xj
]

F, + Fy

K +
1uo azP

azaluo
K1U +
o]

Cy

a2a1
(K + <, ) u (4)

it

*See second paragraph under "Statement of problem."




Comparing equations (4) and (2), it is evident that the stiffness K

which is being sought is given by the formula
G207
C2

K=K + )

where K, a1, 02, C; are quantities obtained by solving the two
subsidiary problems shown in figure 6.

In order to facilitate the solution of the problem shown
in figure 6(b), the loading in that problem will first be decomposed
into the two components shown in figures 7(a) and 7(b). Each of these
component loadings possesses a symmetry or antisymmetry which will
produce a corresponding symmetry or antisymmetry of the deformationms.

The superposition of the two loadings gives the loading of figure 6(b).
Thus the solution of the problem of figure 6(b) can be replaced by the
solution of the two simpler problems of figure 7. These will now be
discussed in more detail. '

Under the completely symmetrical loading of figure 7(a)
there will be no tendency for an overall shear deformation te develop,
and therefore there will be no resultant shear force required on any
longitudinal section to suppress this deformation. The corners labeled
A will deflect upward an amount proportional to P. Their deflection can
therefore be denoted C3P.

Under the antisymmetrical loading of figure 7(b) a shear force
will be required on longitudinal sections in order to prevent the overall
shear deformation which’would otherwise occur., Since there is no re-
sultant longitudinal shear force due to the symmetrical loading component
(fig. 7(a) ), the shear force due to the antisymmetrical component must

be the same as that shown in figure 6(b). It is therefore labeled F, = ayP



in figure 7(b). This loading component will also produce an upward
deflection of the corners labeled A, of an amount proportional to P
and therefore denoted C,P in figure 7(b).

The sum of the deflections C3P and CyP of figure 7 must equal

the deflection C,P of figure 6(b). Therefore
Cy = C3 + Cy (6)
and equation (7) becomes

a0 .
K=K1+-—- (7)

Thus the determination of the shear stiffness K for the origiral
problem (fig. 4) depends upon the solution of three subsidiary problems
represented by figures 6(a), 7(a), and 7(b). These will be called prob-
lems I, II, and III, respectively. From their solutions certain stiffness,
compliance, and influence coefficients are to be abstracted for use in
the right-hand side of equation (7): Problem I will yield a; and K;;
problem II, C;; and problem III, ap and Cy.

Solution of problems I, II, and I1I. - The solutions of problems

I, II and III are described in some detail in appendixes I, IT and III,
respectively. Here let it suffice to say that each solution is an approx-
imate one based on the method of minimum potential energy. Only a single
corrugation needs to be considered, and for each cross section certain

degrees of freedom are allowed for the deformation of the cross section in

its own plane and normal to its own plane. Thus, the deformation of the
corrugation is described in terms of a finite number of cross-sectional
deformation parameters, each being a function of the cross-section location —

i.e., a function of z. The total potential energy of the corrugation is

10




written as a functional of these deformations parameters. By means of

the calculus of variations, linear differential equations and boundary

conditions are obtained, defining as functions of 2z those cross-sectional-

deformation parameters which minimize the total potential energy. These
differential equations are solved by standard means, and from the solutions

the constants required in equation (7) are evaluated.

NUMERICAL RESULTS AND DISCUSSION

Geometries considered. - By the method described above, numerical

data on overall shear stiffness were obtained for a variety of geometries,
all restricted, however, to the case of equal width crests and troughs
(1.e., f=2e). With equal width crests and troughs, the cross-sectional
shape is defined to within a scale factor by the ratios f/p, h/p, and

t/p. The following numerical values were taken for these ratios:

£/p = .1, .2, .3, .5
h/p = .1, .2, .3, .4, .5
t/p = .005, .015, .025

giving 4x5x3 = 60 different cross sections. With f/p (=2e/p), h/p, and
t/p fixed, the remaining geometrical properties of the cross section
are automatically determined. Table 1 gives, for each f/p and h/p com-
bination, the values of some of these other properties. The first
numerical entry in each box is the angle 6 .in degrees, the second the
ratio k/p, and the third the ratio p'/p, where p' = 2e + £ + 2k is the
developed width of a corrugation. Also shown in each box of the table

is a sketch of the cross section.

11




Table 1. Geometrical properties of cross section considered in calculations
f/p
.1 .2 .3 .5
h/p
a1 8 =14.04° 18.43° 26.67° 90.00°
k/p = 0.41 0.32 0.22 0.10
p'/p = 1.02 1.03 1.05 1.20
21 6 =26.57° 33.69° 45.00° 90.00°
k/p = 0.45 0.36 0.28 0.20
p'/p = 1.09 1.12 1.17 1.40
31 o= 36.87° 45.00° 56.31° 90.00°
k/p = " 0.50 0.42 0.36 0.30
p'/p = 1.20 1.25 1.32 1.60
41 8 =45,00° 53.13° 63.43° 90.00°
k/p = 0.57 0.50 0.45 0.40
p'/p = 1.33 1.40 1.49 1.80
5] 8 =51.34° 59.04° 68.20° 90.00°
k/p = 0.64 0.58 0.54 0.50
p'/p = 1.48 1.57 1.68 2.00

1

[




For each cross-sectional geometry, values of the length parameter
2b/p were selected, ranging from 0.4 to 2000. This range is felt to
be sufficiently large to cover all cases of practical interest.

Elastic properties assumed. - For the calculations an isotropic

material was assumed, with Poisson's ratio v taken as 0.3, giving
.385 as the corresponding ratio of shear modulus G to Young's modulus E.

Dimensionless stiffness parameter. - In presenting the results

it will be more efficient to employ a dimensionless stiffness parameter
2, rather than the dimensional parameter K discussed earlier. The

dimensionless stiffness parameter is defined as follows:
Q = K/K' (8)

where K' is the value of K for an identical corrugated plate with
continuous attachment at the ends of the corrugations of such a nature
as to produce a uniform shear strain throughout the plate.*

The stiffness K', which is an upper limit to the stiffness
achievable with discrete attachments, can be readily computed as
follows: In a uniform shear deformation in which line mn in figure 4
advances an amount 2u° with respect to line pq, the uniform shear

strain in the plate material must be 2uo/p', where

p' =2 +f + 2% €)

is the developed width of one corrugation. The shear force F' re-
quired to maintain this deformation is

o]
F'=G «t * 2b + —r (10)

where G is the shear modulus of the material. Therefore

_ 4Gtb
1

| J— [}
K' =F /uo >

(11)

*Such a condition of uniform shear strain could, in principle, be
achieved by having the end cross sections welded to a thin diaphragm which
is infinitely stiff with respect to deformations in its own plane but offers
no resistance to deformations normal to its own plane (warping deformations
of the cross section).

13



It is a simple matter to convert the dimensionless § into
the dimensional K (via the relationship K = QK') or into any other
stiffness parameter which may be preferred. One such other stiffness
parameter might be the ratio of the shear stress F/2bt to the over-
all shear strain y shown in figure 4. This ratio, which is essentially

an effective shear modulus, is given by

) F/2bt Kuo/th
eff Y 2u
2
P

1
©
o jo
o

(12)

Typical results. - Figure 8 shows the typical variation of @

with respect to b/p, the ratio of semi-length to pitch, for a particular
shape of cross section (f/p = 2e/p = 0.3, h/p = 0.3) and three different
values of the sheet thickness-to-pitch ratio, t/p.

It will be noted that as the length-to-pitch ratio increases &

approaches unity; that is, the stiffness approaches the value associated
with continuous attachment of such a nature as to produce a uniform
shear strain throughout the sheet. This is to be expected since the dis-
cretely attached and the continuously attached plates differ from each
other only by a St. Venant effect, that is an effect which is localized
near the ends of the corrugations.

The approach of Q to unity as b/p increases is seen to be much

more rapid for the thicker sheets than for the thinner sheets. For

14




example, at b/p = 10 (length—to-pitch ratio of 20), the values of & for
t/p = .025 and t/p = .005 are .74 and .15, respectively. It is apparent
also that the "end effects'" undoubtedly can propagate an appreciable dis-
tance inward, especially for the thinner sheets. For example, for t/p = .005
and a length-to-pitch ratio as large as 200 (b/p= 100), the value of @ is
still only .64, that is the absolute shear stiffness in the case of dis-
crete attachment is only 64 percent of that achievable with continuous attach-
ment.

The curves in figure 8 for the three diferent values of t/p can be
seen to have virtually the same shape and they can therefore be made to
nearly coincide if each one is shifted horizontally a different amount. This
suggests that t/p can be very nearly eliminated as a parameter by changing
the abscissa from b/p to (b/p)-¢(t/P) where ¢(t/p) is some function of t/p.
The effect of such a change, when a logarithmic scale is used for the abscissa,
is to shift each curve horizontally as a rigid body a distance log ¢(t/p),
and if the function ¢ is properly chosen, these shifts will be such as to
bring the curves for different t/p practically into coincidence.

For the particular cross section considered in figure 8, an appropriate

function ¢ is found to be (t/p)1'71, and the proper abscissa is then

(b/p) (t/p)1'71. Figure 9 shows the results obtained by replotting the

data of figure 8 using the new abscissa. It is seen that, except for a
slight separation at the lower end, the curves for all t/p coincide. 1In
other words, for the given cross-sectional shape, the dimensionless stiffness

1'71, rather than a function of

Q is essentially a function of (b/p) (t/p)
b/p and t/p separately. The advantage of such replotting is that it greatly

simplifies, or even eliminates the need for, interpolation and possibly extra-

15



polation with respect to t/p. Furthermore, it reduces greatly the
number of graphs required in presenting the results.

General results. - In figure 10 are plotted the results obtained

for all combinations of the cross-sectional shape parameters f£/p and
h/p. The results are plotted in the economical form discussed above,
i.e. by means of semi-logarithmic plots of Q versus (b/p) (t/p)n, the
exponent n being chosen so as to make the curves for different t/p
coincide as nearly as possible. As implied in figure 10, the exponent
n depends upon f/p, but turns out to be independent of h/p.

Comparing the curves for different h/p values in any one of the
four parts of figure 10, it is seen that the smaller h/p (that is, the
more nearly we approach a flat plate), the higher the value of Q. Com-
paring the four parts of figure 10 with each other, it is evident that
reduction of f£/p(=2e/p) also leads to an increase in Q.

Further reductions in the number of parameters. - Examining any

one of the four families of curves in figure 10, it can be seen that the
curves for different values of h/p differ from each other mainly by a
rigid-body horizontal shift, This suggests that another cocndensation of the
results can be effected by properly incorporating h/p into the abscissa., This
is done in figure 11, where § is plotted as a function of (b/p)(t/p)n/(h/p)m
for the four different values of f/p., With this abscissa the re-
sults for the various combinations of t/p and h/p all lie within the bands
shown. The exponent m, like n, is a function of f/p, but a much less
sensitive one than n. The numerical values of both exponents appropriate
to each band are shown alongside the bands.

A final condensation of the four bands of figure 11 into a single,

somewhat wider, band is accomplished by incorporating f£/p into the abscissa,
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as shown in figure 12. 1In this figure, if one is willing to neglect the
uncertainty represented by the finite width of the band, @ is given as

a function of the single parameter (b/p) (t/p)" (h/p) ™ (f/P)—2'79,

where n and m are, in turn, functions of f/p. The variation of n and m
with £f/p is shown by the small inset graph in figure 12. The curves of

n and m are shown dotted between £/p of 0.3 and 0.5 because of the un-
certainty of the fairing in this region due to the absence of computed
data for f£/p = 0.4.

Figure 11 represents the most economical presentation of the re-
sults. It is also the most convenient one for practical use, for it
eliminates the need of interpolation with respect to t/p, h/p or £/p,
provided that the error due to the finite width of the band is considered
acceptable.

Comparison of different end attachment conditions. - Figure 13

illustrates the sensitivity of € to the end attachment conditionms.

It shows, for a particular cross section, the variation of © with respect
to b/p for three kinds of end attachments. The middle curve is for the
present case. The top and bottom curves, taken from reference 1, are for
wide attachments to a rigid flange and point attachments with no inter-
fering end member, respectively. It is seen that for the smaller length-
to-pitch ratios a large percentage change in § is produced in going

from one type of attachment to another. For the very long corrugations

all the § wvalues are close to unity, and there is therefore relatively

little change in o as a result of altering the end attachment conditions.
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ILLUSTRATIVE APPLICATION

In order to illustrate the use of the graphical results
presented herein, a particular numerical example will now be con-
sidered, involving the corrugated shear web in a hinged picture frame
shown in figure 14. The assembly is fastened to a rigid wall along
its left side and loaded with a vertical shear of 100 kips at the
right end. The web is of steel with a shear modulus, G, of
12,000,000 psi.

The problem is to determine the vertical deflection of the
right end. The axial and flexural deformations of the edge members
will be assumed to be negligible, and because of the hinges at the
corners the entire vertical load will be assumed to be carried by the
web alone. It is assumed further that, by means of guides or through
proper lateral location of the 100-kip load, the action of the
structure is one of pure shearing without twist.

The problem will be separated into two parts: First, the determin-
ation of the dimensionless shear stiffness . Second, the conversion
of Q@ into a dimensional shear stiffness, from which the desired

deflection can be obtained.
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Determination of @. - Figure 12 will first be used for the quickest

determination of Q. To that end the following ratios are needed:

b _ 30 _
Z=3=10
o116 62080
p 3

b sin 60°
o= S5 = 2887
£_1_

== 3= .3333

From the inset graph of figure 12 the following exponent values are

obtained for £/p = .3333:

n= 1,68
m= 1.48

The abscissa required for the use of figure 12 can now be evaluated:

b (-t-)n 1.68

o _ 10(.02080)"" - 2.01
o 2.79 1.48 2.79 y
Q) & (.2887)  (.3333)

Corresponding to this value of the abscissa, the scatter band of fig. 12 gives
Q as lying between .64 and ,70. Selecting the middle of the scatter band,
one obtains Q = .67.

As a check, the value of  will now be recomputed by interpolation

among the more accurate graphs of figure 10. The required abscissas are

as follows:
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1.91 1.91

5 & = 10(.02080) - .00613
PP
1.81 1.81

b g = 10(.02080) = .00903
P P

L1 1.71
LA = 10(.02080) = .0133
P P
b 1.60 1.60
P (;) = 10(.02080) = .0204

Entering these abcissas into parts (a) through (d) respectively of
figure 10, and interpolating with respect to h/p, one obtains the

following values of Q:

"3 |Hh

Plotting this relationship and putting a smooth curve through the
points, one obtains, for f/p = .3333, Q@ = .65.

The graphs of figure 10 do not contain any scatter bands and
are therefore inherently more accurate than figure 12, which suggests
that the second value of Q, namely .65, is more accurate than the
first. However, one cannot be certain of this, because figure 10
requires interpolations, which can reduce accuracy.

Computation of vertical deflection of right end. - With Q = .65

selected as the probably more accurate value, equation (12) gives the

following effective shear modulus:

(]
{

- 3
oeg = (+65) x 7 x 12,000,000

5,850,000 psi
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The average shear stress on vertical cross sections is

T o= 199&99%—— = 26,667 psi

Thus, the overall shear strain angle vy is

T 26,667 ___ _ 00456

Y = = "
Sy 5,850,000

In a 27-inch length, this leads to a tip deflection of 27 x (.00456),
or 0.123 inch.

It should be noted that in this calculation the stiffening effect
of the attachments along the two vertical sides of the web is being neglected,
because the Q curves are based on the assumption that the plate is in-
finitely wide in the direction perpendicular to the direction of the

corrugations.

CONCLUDING REMARKS

Theory and curves have been presented for computing the shear
stiffness of a trapezoidally corrugated plate attached to relatively
rigid flanges by means of small attachments at the ends of the trough
lines, in such a way that the flanges interfere with the deformations
of the end cross sections of the plate.

The analysis is an approximate one, based on the method of
minimum total potential energy, linear elasticity, and the assumption
of small deformations. Although the analysis permits a rather general
type of cross section, the computed curves are restricted to the case
of equal-width crests and troughs.

Experimental data are lacking against which to compare the theor-
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etical results. Because of the simplifying assumptions made in the
analysis -- assumptions regarding the nature of the deformatioms,
and idealizations regarding the attachments -- it is felt that ex-

perimental verification of the theoretical results would be desirable.
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APPENDIX I

SOLUTION OF PROBLEM I

In this appendix the solution of the problem represented in
figure 6(a) will be described. This problem was solved in reference 1,
and therefore most of the mathematical details will here be omitted,
except  where certain equations can be given in a different form more
conducive to computational accuracy.

As mentioned earlier, the plate is assumed to be composed of
infintely many identical corregations, all deforming in an identical
way, and the analysis may therefore be based on a single corrugation,
such as the corrugation between trough.lines mn and pq of figure 6(a).
The shearing of this corrugation is imagined to be effected by a forward
longitudinal shift of mn through a distance u and a rearward longi-
tudinal shift of P9 through the same distance, producing a total
relative shift of 2uo for the corrugation. In these shifts the end
points m,n,p,and q¢ of the trough lines are moved only longitudinally.
However, the rest of the points of a.trough lipe are permitted to move
both longitudinally and laterally, so that the trough lines, as well
as all other longitudinal generators, may become curved. Considerations
of symmetry and continuity dictate that there can be no vertical dis-
placements of points on the trough lines. These considerations also
lead to the conclusions that all the points on a given trough line
have the same longitudinal displacement (i.e., the trough lines
experience no longitudinal strain) and.both trough lines curve into

identical shapes.
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The analysis is based on certain assumed degrees of freedom for
the deformations of the cross sections. These degrees of freedom will
be described with the aid of figure 15. Part (a) of that figure shows
the middle surface of the cross section and the station numbers assigned
for convenience to the edges and the various corners of the cross section.
Part (b) shows the assumptions regarding the longitudinal displacements
appropriate to the antisymmetrical nature of the deformation. At
stations 0 and 5 these displacements are +uo and -u_, respectively,
as already discussed, with u independent of 2z. At stations 1 and
4 the longitudinal displacements are +u, and -u,, respectively, with

1

u, depending on z; at stations 2 and 3 they are similarly +u2(z)
and —u2(z). In between stations, the longitudinal displacements are
assumed to vary linearly. Therefore the longitudinal displacements of
all middle surface points of the corrugation are defined by one pre-
scribed~displacement parameter u, and two unknown functions of z:
u;(z) and u,(z). If the resultant longitudinal shearing force F,
is regarded as prescribed instead of u s the latter becomes an unknown
constant.

The deformations of a cross section in its own plane are assumed
to be inextensional and to be a superposition of the three antisymmetrical
component modes shown in figure 15(c). The third of these modes is a
rigid-body horizontal translation of an amount vo(z). The other two
modes are identical with the deformations of a uniform rigid-jointed
frame of the same shape as the cross section, with stations O and 5

hinged and certain displacements imposed on the joints corresponding

to stations 1, 2, 3 and 4. For the first mode shown in figure 15(c¢)
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an upward vertical displacement of an amount vl(z) is imposed at
joint 1, and the same displacement is imposed downward at joint &,
while joint 2 is constrained to slide parallel to line 1-2 and joint 3
is similarly constrained to slide parallel to line 3-4. These sliding
displacements must be vlsine, as shown in the figure, in order to
satisfy the inextensibilily assumption. For the second mode shown in
figure 15(c) joint 2 is displaced an amount vz(z) perpendicular to
line 1-2, and joint 3 a like amount perpendicular to line 3-4, while
joints 1 and 4 are held in their places. In both of the frame-
deformation modes of figure 15(c) the joints are permitted to rotate
freely as rigid joints. Thus the.deformations of all cross sections
in their own planes are defined by three unknown functions of 2zt
vo(z), vl(z), vz(z).

On the basis of these assumptions one can now write expressions
for the displacement components u, v, w of any point on the middle
surface of any plate element in terms of u s ul(z), uz(z), vo(z),
vl(z), and vz(z). The location of a middle-surface point can be
specified by its longitudinal coordinate, 2z, and its transverse
coordinate, s, the latter measured from an edge of the plate element
in which the point lies (see fig. 15(a)).

The displacement components u and v are respectively longitudinal
(z-wise) and transverse (s-wise). The w displacement component is
measured perpendicular to the plate element in which the point lies.
The middle surface strains, curvatures, and twist can then be evaluated

via the following expressions
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(By virtue of the inextensibility assumption,

ov/3s of the middle surface is zero).

Longitudinal strain:

Shear strain:

Longitudinal curvature:

Transverse curvature;

Twist:

d
22

9z

Ju av
= — 4+ —

as 3z

Yy va

W
\
W

o9z

the transverse strain

With u, v, and w expressed in

terms of the basic degrees of freedom us ul(z),..., v,(z), the above strainms,

curvatures, and twist also become functions of these degrees of freedom.

The strain energy of deformation of each plate element can then

be written.

For this purpose the material is assumed

and the strain energy per unit of middle-surface area

W=

where E

ratio, and D

SZW 2
D e
(G2

is Young's modulus,

Eed3/[121-v9)].

1 3u, 2
5 Et (a—z-) +

32w
+ (Bsz)
1 Ju
‘EGt (—a-g

G is the shear modulus,

to

is

+

v

be isotropic

taken as
32w
2(1-v) (BSBZ
dvy?
2z

is Poisson's

It will be noted that there is a

slight inconsistency between the assumption that the transverse

strains are zero and the use of E

(rather than E/(1- v?))

2
) ]

in the term which represents the strain energy density of middle-surface

longitudinal deformation, i.e. the term containing (3u/dz)Z2.

consistency is deliberate; it is felt that in actuality the assumption of
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zero transverse stress is more nearly correct than the one of zero

transverse strain, and therefore Et(du/dz)? is a better represen-
tation of the strain energy density of longitudinal extension than

is [Et/(1-v®)] (su/5z)2?.

In reference 1 two simplifications were made to equation (I-1),
and these simplifications were retained in the present analysis of
Problem I. The first is the dropping of the underlined terms on the
ground that the longitudinal curvatures 3%w/3z2 are probably much
smaller than the transverse curvatures 32w/3s2.* The second is the
replacement of the local twist 32w/3sdz by the average twist over
the width of the plate element. For example, for the plate element -
0-1, the twist was assumed constant across the width at the value
d(vy/e)/dz. The twist makes only a small contribution to the total
strain energy, and its approximate treatment in this fashion should
introduce very little error.

With these simplifications made, and w, u and v expressed in
terms of uos uj(z),..., vo(z), the strain-energy density W becomes
a function of these six parameters. The strain energy of one of the
plate elements can be written as a double integral of W over the
area of the plate element, and the integration with respect to the
s—-coordinaté can be carried out explicity. The total strain energy

U is obtained by summing the strain energies of the five individual

*We point out in advance that this simplification will
not be permissible in appendix II.
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plate elements. The total potential energy (TPE) is obtained by adding
the potential energy —F1-2uo of the applied shear loads to the strain
energy U. The resulting expression for the TPE is equation (Al) of
reference 1, in which the symbol F would be F; in the present notation.¥
The ekpression for the TPE thus obtained is a functional of
us u;(z),..., vo(z). By means of the variational calculus, differential
equations, boundary conditions, and one integral equation are obtained
defining those us u;(z),..., vp(z) which minimize the total potential
energy and which therefore represent the "best" approximate solution to
the problem within the framework of the permitted degrees of freedom
of deformation. 1In taking the first variation of the TPE use must be
"made of the & priori boundary conditions of constraint, namely Vo(rb) = 0,
The differential equations and boundary conditions to be solved
are linear, and the details of their solution may be found in appendix B
of reference 1 and will not be repeated here. However, we will take the
opportunity here to note that better computational accuracyican be
achieved by using different expressions than in reference 1 for the co-
efficients of the characteristic equation. This characteristic equation

(B12 of ref. 1) is

(k + kor? + kyr' + kgr® + kgr®)r?2 = 0 (1-2)
and it is to be solved for the roots r;, rs,...rjg. The coefficients
are defined by equations (B 13) of reference 1, but the following equiv-
alent definitions require fewer arithmetic operations and were therefore

used instead**:

*The procedure used in reference 1 in order to obtain the TPE is
described therein in a somewhat different way, but it is actually egquiv-
alent to the procedure given above.

**The ko"" kg definitions given here also differ by a constant factor

from the ones given im reference 1l; since the right side of equation (I-2)
is zero, this difference will not affect the roots.
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k, = BGQ; + CFQ; + D7P;Ds + Dg(N;Dg + P;D,) + D,JM

+Dy(MH + JK) - FDsM - G(DsK + DM) - BJIP,

-C

k, = AGQ; + CEQ; + BFQ; + DgPDg + DgN;b, + D,(N;D5 + P;D,)

k =0GQ; + DgP;Ds + D3JM - GDsM - CJP; - DgD3Q; \

(JN; + HPy;) - DyD3Q; - DgDyQ

+D;JM + D3gKH + Do(MH + JK) - EDsM - GD4K

> (I-3)
- F(DsKk + DyM) - AJP; - CHN; - B(IJN; + HP;)
- BgD3Q; - DgDiQy - D7D2Q)

kg = AFQ; + BEQ; + DyNi;Dy, + Dg(NDs + ©P;Dy) + DoyKH

+Dy(MH + JK) - FD,K - E(MDsK + DyM) - AQIN; + HPp)
- BHN; - Dgh2Qy - D701y
ke = AEQ; + DgN;Dy + D3KH =~ EDYK - AHN; - DgD1Qy
where
1 1 \
= = 3 bijejedzz + 5 (br1dap = biadip) e
l 1 1 :
= -3 G d1od11 = eneqp) dz2 = 5 812 (b11dzp =bi2dyp)
1
+5 erp (c12d1o = c11d20)
«--1 ayp (cy12dy1g = c11d2g)
7 212 (c)12d1g 11420 >_(1_4)
1 1 .
= - 3 dysbiserp + 5 (by2dzo = baadio) ez
1 L L ay; (b1od b2d; )
= 5 (erge12 - 7 diod21) do2 = 5 a1z (bi2dag = bz2dio
+ % ejp (cgodyg = cya0dog) (equations continued

on next page)
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ayy (cpdyp -

=}
£
H
e LR L S o

1
Ds = 7 andygday - 7 (da1dy1p = dzodiy) 212
1 1 b
Dg = - 5 dpgepgbyy + 3 epp (dpgbyy = dypbiz)
1 1
D; = F dpreppcyy - 5 ap (dyebyy -
1
Dg = 3 az; (dpcry = c¢12di10)
1 1
E = -3 eyobipdyy + 5 exp (daobiz = b22dyo)
1 1 1
F o=-35dyp (Gdpodip - e20612) - 3
1 .
+ 5 exp (cp2dig = dzpc12)
1
G = -5 ayy (cppdyg - dpoci2)
1
H = 7dpp (egedy; - digerz) -
1 . 1
J = 7 apdigdyy + 7 a2 (dpedyy - dz1dgp)
1 1
K =-3eggbiidyy + 5 €0 (dob11 - dyobi2)
1 1 1
M= -3dyp (7dio® - egoc11) + 5 ez (e12dyp -
1 1
Ni= - 5 egobiadzz + 7 ez0 (d2obiz = baadig)

1
Py= 3 d22 (egoci2 -

1
Q= 7 (egpdyidzp -

cp2dyp)

azy (dpgbyo -

1
(e1odyy - eqydig) dpp + 7 (d21djp = dzodny) e

1
diob12) + 7 exp (eq2dyp -

bjodyp)

1
7 €22 (daodyy = d1dyp)

dzpc1y)

1 1
7 d20d10) + 3 ezp (ea2d10 = dz0c12)

ejodipdoz + dzi1digenp -

dyodyrezq)

The lower case symbols b;i, ejp, etc. in the above have the same

definitions as in reference 1.
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Once the differential equations have been solved for
uy(z),..., v2(z) in terms of u s the influence coefficient a)
depicted in figure 6(a) can be evaluated by equating ajup to
vi(b). The one integral equation obtained from the variational
process relates F; and ug and therefore yields the stiffness K;

shown in figure 6(a).
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APPENDIX II1

SOLUTION OF PROBLEM II

Assumed displacements. = In this appendix the problem depicted

in figure 7(a) 1is analyzed. Again certain modes of deformation are
assumed, this time modes which are consistent with the symmetry of
the loading and structure and the continuity of each corrugation with
its neighbors.

The displacements of a cross section in its own plane are
assumed to be a superposition of the two modes shown in figure 16(c).
The first is a rigid-body upward translation of an amount vo(z). The
second is the known elastic curve assumed by a uniform inextensible
rigid-jointed frame of the same shape as the cross section when the
joints 0 and 5 are clamped and joints 1 and 4 are displaced upward an
amount v;(z), and all the joints except O and 5 are permitted to ro-
tate freely as rigid joints. Thus the displacements of any cross
section in its own plane are defined by two unknown functions of
z: vo(z) and vi(z).

Figure 16(b) shows the assumptions regarding the longitudinal
(z-wise) displacements of the middle-surface points of the cross sect
As before, these displacements are assumed to vary linearly between
stations. At stations O and 5 they are equal, by symmetry, and thei
common value is denoted by uo(z). As shown in figure 16(b), the dis-
placements at the adjacent stations, 1 and 4, are also taken as uo(z)
This is done because symmetry dictates that there be no transference

of shear flow across the trough lines from one corrugation to the nex
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hence the shear strain in the plate elements 0-1 and 4-5 must be
zero., At stations 2 and 3 the common longitudinal displacement is
designated as u times uo(z), where | 1is a constant so chosen
as to give zero for the mean longitudinal displacement over the
entire cross section, in accordance with the requirement of zero
resultant tension or compression on the cross section.* The re-

quired value of p is readily determined to be

- . 2etk

4k (11-1)
For the case of equal-width crests and troughs, u=-1 . Thus a
single unknown function, uo(z), defines the longitudinal displace-
ments of all middle-surface points of the corrugation.
Longitudinal strains. - From figure 16(b) the following ex-
pressions are readily obtained for the longitudinal strains e of
the middle surface of plate elements 0-1, 1-2, and 2-3:
Plate element Longitudinal strain, ¢
0-1 du
)
dz
1-2 ' du du (11-2)
-2 4 (u-1) —=
dz k dz
2-3 du
H [2]
dz
|

The coordinate s is measured from the left side of the
plate element, as shown in figure 16(a). The strains for the plate

elements 3-4 and 4-5 can be obtained from symmetry.

*See section entitled "Statement of problem'" under METHOD OF ANALYSIS.
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Shear strains. - Figures 16(b) and (c) give the following

expressions for the middle-surface shear strains y:

Plate element Shear strajin, vy
0-1 0 _
d (p—l)uo
1-2 i (vosine + vising) + — (11-3)
2-3 0

Normal displacements. - The displacements normal to the plate

elements will be denoted by w;(s,z), wr(s,z), etc. (When it is not
important to identify the particular plate element under consideration,
the symbol w, without a subscript, will be used to denote normal
displacement.) The positive directions of w;, wy, etc. are shown in
figure 16(a). Equations for these displacements can be obtained by
making an elastic analysis of the rigid-jointed frame corresponding

to the bottom diagram of figure 16, and then adding on the normal dis-
placements due to the rigid-body translation vo(z). The resulting

expressions are:

2 3
vy =v, v [(%) Bi2 + (-Z—) 813]

s s, 2 s, 3
wy = vocose + vy [coss + E‘BZI + (E) Bop + (E) B3] (11-4)

3
S
W3 VO+V1 [l+?831+(%) 832]

where
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812=3[1—%—‘E(2k + 1]
313"“2*'%‘5(2
gzza-% E(}f;+ 2) (11-5)
B3 =3 e 2 G+ D)
g1 = -3 L2
B3z = = B3
with
353Lf+41;—£-+2£-+2§ (I1-6)

k2

Expressions for the curvatures and twist of the middle surface
can be readily obtained from equations (II-4). For example, for

plate element 0-1 they are:

922 dz2 dz2

2 3
. [(é) Bio + (_se_) B13]

32w 2 6s
'af;r]‘ =vy [g Biz + o7 B13) (I1-7)
32w, _dv 2 3s?
=—1 .48 28
350z _ dz [ 812 + 23 815l

Strain energy. - Assuming an isotropic linearly elastic material,

the strain energy of any plate element per unit of middle-surface area

can be written as in Appendix I, namely
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1 32w, 2 32w 3%y 32w, 2 oy ,8%w (2
W= D [(_822) + 205 o 4+ (332) + 2(1~-v) (asaz) ]
+ % Et €2 + % Gt y2 (11-8)

where w, € and y are the normal displacement, longitudinal strain,
and shear strain appropriate to the particular plate element under
consideration, from equations (II-2), (II-3) and (II-4). Trial
analyges have shown that serious error results if the terms containing
32w/32z2 are neglected here as they were in Appendix I. Accordingly
all the terms shown in the above equation will be retained in the
further development of this appendix.

The total strain energy of any plate element can be written
as an integral of W over the entire length and width of the plate

element; i.e.

J J W ds dz (I11-9)

where a is the width of the particular plate element under consider-
ation (a=e, k, or £f). Substituting the appropriate expressions for

w, £, and y, the integration with respect to s can be carried out
explicitly, leaving only an integral with respect to z. If this is done
for each of the five plate elements, and the resulting five strain
energies are summed, the following expression is obtained for the

total strain energy U of the entire corrugation:
b
U= J (VSh + Ve + Vf) dz (11-10)
-b
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where vsh’ Ve’ Vf are respectively the strain energies of middle-surface

shear, middle-surface extension, and plate flexure and twisting, per

unit length of corrugation, and . are given by the following expressions:

)

2 u°2 )2 4, dv, dv
Vgp = 6tp [(Q-1)% ) -+ 2(u-1) sine - — Gt
dv dvy 2
K in% 2 4+
+ m sin<e (dz + 1 ) ]
du_ 2
- _0y e, 1 2y k1 2%
vy =Etp (g [D+ 5 Ahnd) S+ 32 0]
DV12 D dv, 2
Vg T Tt M +; (E—) « 6(1~-v) oy
d2vo 2 dzv0 d2v, d2v; 2
Do) ast 2 gpr G PG C 9s
dZV dzv-.
+ 2y ——72 ag + 22 Vi e a7
P 1 dz 6 P 1 dz2
where

3
a) (2—) (48122 + 12812813 + 128)3%)

3 18 p°f
+ By (4822 + 128226825 + 126532) + 37 Bp

3
ap = E (% B122 + B12B13 + 3 B13%)

2 4 3
+£— (% B212 + % 821822 + 3 B21B23 + § B222 + ByoBo3 + 5 B232)

+7 1 p33

10 RZ ehk2
az = 2 +-1£cosze +l£
P P 2p
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(equations continued

on next page)



oy =§ (% Bio + 7 813) +l; (cost + 3 5> B21 +3 3 B22 +3 7 B23)coss

+

N =

f 1
> (L+35 83 +3 332)

1 1 1
ag = = (5 6127 + 3 812813 + 5 8137)

9 |0

<¥ %-[cosze + 2cosb C% Bo1 + 822 + = 623) + = 621

1 1 2 1 1
+ 5 B21B22 + 5 8227 + 5 821823 + 5 B22B23 + 7 B23%]

lf 1 2 1 1
t7p @FBat3 B31% + 5 B3z + 5 B31B32 + 5 B3p?)
og =£- (2812 + 3B13) +£ (28,5 + 3B53) cosd +% B3o
2 6
a7 =B (5 8122 + 2815813 + 5 8132)

+ ﬁ- [(2B5 + 3853) cos® + ByqB,; + 2823821

2 6
+ 5 8227 + 2B23Bp) + ¢ B33°]

P_
+ T B3 (1 +— Ba1 + 3 332) —/

In the above equation for Vf, the aj term represents those contributions

2
arising from the term (32w/ds2) 1n equation (II-8); the a, term
those due to (5°w/3s3z)2; the a3, a, and og terms those coming from
2 2
(5%2w/922) ; and the ag and oy terms those due to (3%w/3s2) (82w/3z2).

Total potential energy. - The total potential energy (IPE) of a

single corrugation is obtained by adding to the strain energy U (eq. (II-10))/
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the potential energy —4P[v1(b) + Vo(b)] of the applied loads on one
corrugation (See figs. 7(a) and 16). The attachments at the ends of

the trough lines require that the vertical deflection at stations 0 and
5 of the end cross sections be zero. Referring to figure 16(c), this

implies the geometric boundary condition
vo (3b) =0 (1I-15)

Thus the potential energy of the applied loads can be written simply

as -4Pvi(b) , and the TPE is therefore

TPE = U -4Pv; (b) (11I-16)

Minimization of the TPE. - The TPE (eq. (II-16) ) is a functional

of uo(z), vo(z), and v (z). We now seek the forms of these functions

which mimimize the TPE. To that end we first form the first variation

of the TPE, G(TPé), due to the variatioms Guo(z), Gvo(z), 8v1(z) in uo(z),
vo(z) and v;(z), by the standard technique of the variational calculus.

In the resulting expression any integrands containing derivatives of

Suo, Gvo, or 8v) can be reduced through integration by parts to integrands
that involve Guo, 6vo, dv,; alone, rather than their derivatives. Per-
forming such integrations by parts, taking inte account the boundary
condition equation (II-15), the even-ness of v, and v, with respect to z,

and the oddness of ug with respect to z, one obtains

b

+ §(TPE) = J [L « 8v (z) + 1L « &vy(z) - L
v o] vy
b o °

o=
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where

=~
1

+

t
"

Vi

+

+

L =
u
)

+

+

B =

z=b

+ 4K « B = 8u_(b)
u p o
)
d(Gvo) d(8vy)
+ 4B’ L 5 + 4B' T
Yo z z=b Vi z=b
4P
- 5+, ) i)
d“vo K2810 d2vo
[205p dz% P dz2
d*v, N Kog19 d%vy
[2a,p Iz T (20 P > ) —525]
gg duo
[k 7 7]
N 2
= [2 2% + (20 > - Kag10, 2 v°]
“uP T 6 p P dz2
d"vl v 2K2g9 dzvl 2&1 ]
[Zasp Izt + (407 ; - ——p— 322 + —-;3‘ vy
g8 duo
[Q-w) K 55 -]
gg dv
a
[a-w) x, > 1z
gg dvy
[Q-w) k, 3 Taz
d2u u
[2K, (28, + g2 + ugs + u?gy) dz‘; + Ky {g5 - 286 + ug7(2—u)};%]
duo
(-520
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(I1-17)

(I1-18)

(11-19)

(11-20)

(11-21)
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82

g3

gy

85

€6

&7
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d2V° d2V1
(azp 377 + P =37 +

d2v° d%v,
(wp =g + osP 3z ¥

d o
b3z (P —gz7 + asP 37

i m ni n om n
o ks ~ (o e [ R Lo
+ oo o
= o +
1&5?

m
o
= o

2 sing

Hi

k t,?
= = sin?g + oy (=
D [*] az(p)

g10= 2% sin?g
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(11-23)

(I1-24)

(11-25)
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In order for the TPE to be a minimum, §(TPE) must be zero for
all variations Gvo(z), svi(z), 6u°(z). Therefore Vs V1 and u  must

satisfy the following differential equations.

B =——z,—P—

Vi Vi D

[
o
[+

]
o

In addition to these, the boundary condition (II-15) arising from
the attachments at the ends of the trough lines must be satisfied.

Solution of differential equations. - The differential

equations (II-28) and boundary conditions (II-29) and (II-15) are
linear, and their solution can therefore be obtained by standard
means. Because of the required even-ness of vo(z) and v;(z) and

oddness of uo(z), solutions may be sought in the form

v, = A cosh (mz/p)
v, = B cosh (mz/p)
u, = C sinh (mz/p)

Substitution into the differential equations (II-28) leads to the

following characteristic equation defining the admissible values of m:

m2(ho + hy m2 + hy, m"* + hg m®) =0

where
ho 2 Koupuy - 4a1K1Kpgipuy + usug
hy = 2Kyuouy + 2Kujuy, + 2(20, - a5 — a3) ug
hy = 4(a3os - ay?) uyK, + 4ujKjuz
hg = 8(azas - ay?) ujk,

42
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(11-29)

(11-30)

(11-31)

(11-32)




o p——

with

up = 2g) + gy + ugsz + ngy

gs - 2g¢ + ugy (2-u)

n

uz

u3z = 203 (2a7v - Kpgg) + Kogyg (204 - ag) - 4vayag

(11-33)
uy = hajag - Kpgrg (4agv - 2Kpgg) - (2av - Kpgig)?
us = [(1-n) Kpggl?
ug = 4agv = Kogyig - 4asv + 2K,gq
The roots of the characteristic equation will be denoted by
m = 0, *m,, *m3, *m, (1I-34)
The presence of the repeated zero root indicates the existence of a
solution not of the form of equations (II-30). By inspection, this
solution is found to be
2
z
v, = YlBl(p)
v = Bl (11—35)
z
uo = AlBl(p)
where B; is an arbitrary contant and y; and X have the following
definitions:
=21
Y1 e
(11-36)
AL = - S1810 - o1(1-wge
(1-u) agvgg agVun

Adding to the special solution those solutions which are of the form
(I1-30), one obtains the following complete solution of the differential

equations (II-28):
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Vo

vy =

[+
1

2
AO + v1B, (-Iz;) + v7Bo cosh(m2

0 + B

+

B2 cosh (m2

0+ X1B1§9 + A,B, sinh(m,

where vy; and A

-Iz;) + v3B3 cosh(mj

z z
=) + B3 cosh(my =) +
% 3 3p

%) + X3B3 sinh(mj

zZ Z
=) + v,B h =
> y4B, cosh(m, p)

B, cosh(m, %) (11-37)

z z
~) + AyB, sinh(m, —
p) 4By (my p)

have already been defined, and the remaining v's

and A's are defined by

where

an

a2

a3

azz

az3

]

aj2 a3
azs  az3 (1 = 2,3,4)
a1 a3
a1 a3
a); apz
a1 ap (1 = 2,3,4)
ajn als
az1  azs
203 mj - Kpgyo ml
ar; = 2q, m';_ + (2agv - Kygyg) mi
(1-1) Kygg my

2&5 ml‘ + (40.7\) - 2K2g9) mi + 2(11

i

a3
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(11-38)

(11-39)

(11-40)



T T

The five arbitrary constants Ab’ Bj,+.., B, are determined
in terms of P through the five boundary conditions (II-29) and
(II-15), in a straightforward manner.

With these constants known, the deformations are completely
determined in terms of P, and one can readily obtain the constant

C; of figure 7(a) from the equation

Cp =v (b) + vi(b) = vi(b).,

vy(b) will be proportional to P, and the common factor P will

cancel out of equation (II-41).
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APPENDIX III

SOLUTION OF PROBLEM III

Problem III (that is, the problem represented by figure 7(b))
possesses the same antisymmetry characteristics as problem I (fig. 6(a)).
Its solution can therefore be effected by making only minor changes in
the procedure used for solving problem I. The same defoEmation modes
are assumed as for problem I (see fig. 15), except that u, is set
identically equal to zero, because of the enforced condition of zero
overall shear strain in problem III. Consequently, the strain energy
functional U for problem III is that of problem I with u, set equal
to zero. The potential energy of the applied loads for problem III
is + 4P v, (b) (see figs. 7(b) and 15), instead of‘-Fl . 2uo as in
problem I. The total potential energy functional to be employed in the

solution of problem III is therefore
TPE = U + 4P v, (b) (I11-1)

In deriving the expression for U the same strain-energy-density
expression was used as in problem I (see eq. (I-1)), with the under-
lined terms again omitted, and the local twist 02w/9sdz at any
point in a plate element replaced by an average twist across the width
of the element.

The minimization of the TPE through the calculus of variations

leads to the following differential equations:
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b1y ° :1 + by ° :2 - % 410 :VO - % 4y jv ¥ T Cppup = O
dz dz z z
2 2
b dul+b duz-—l-d —dvo-ld M1y &2 c.u, =0
12, 2 2272 ~2%0d T2% 13 T2 %24z T C12%1 T ™2
dz dz
dzv0 dzvl d2v2 1 du1 1 du2
e +e +e +sd,—+=d,,—==0 (II1-2)
| 00 .2 10 72 2027 2% @& T2 %20 W@
| d2v0 dzvl d2v2 L du du
ez ten T ten T trdnm T Em AN T Y o0
dz dz dz
dzv0 d2v1 d2v2 1 du2
e T2 Ve T te 7 T7dpng T 2121 T2V 0
dz dz dz
and the following boundary conditiocns at z = % b:
dz ’ dz v
dv0 dv1 dv2
2e) 09z Y25 T Ty tdpuy T4
dv dv1 dv2 (111-3)
Ze00 3z T 21T T tdph o

where the coefficients bll’ etc. are defined in reference 1. To the above

boundary conditions must be added the boundary condition of geometric con-

straint, namely
vo(ib) =0 (I11-4)

The differential equations (III-2) are identical with those of
reference 1 (egs. (17) or (Al2) therein) with u, set equal to zero.
The characteristic equation is the same as in reference 1, that is the same

as equation (I-2) of the present paper.

Y




The solution of the differential equations (III-2), subject to
the boundary conditions (III-3) and (III-4), leads to equations for the
deformations uj(z), uy(z), ..., vo(z) as linear functions of P. The
flexibility coefficient C, shows in figure 7(b) is obtained from the
equation

CyP = vy (b) (111-5)

after vy(b) is expressed in terms of P..  The shear force F, in

figure 7(b) is obtained as a linear function of P by integrating the
shear flow in plate element 0-1 along a longitudinal section. The
coefficient of P in the resulting expression represents the desired

formula for the influence coefficient ap shown in figure 7(b).
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Figure 1., - Cross section considered.

(a) Point attachments at the ends of the trough lines.

(b) Point attachments at the ends of the trough lines and crest lines.

LLLLLL L
LLLL:

(c) Wide attachments to a rigid flange at the ends of the trough lines.

Figure 2. - Types of end attachments considered in reference 1.

LLLLLL Ll A L

Figure 3. - Type of end attachments considered in the present paper.
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Figure 4. - (a) Front view and (b) top view of unsheared corrugated
plate. (c) Top view of sheared corrugated plate.
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T TR

(b) Point attachments; zero overall shear deformation; concentrated
upward loads of magnitude 2P at those corners which deflect
downward in figure (a).

Figure 6. - Problems to be superimposed in order to represent the
shearing of a corrugated plate.with point attachments

to a rigid flange.

53




(b) Antisymmetrical corner loads of magnitude P.

Figure 7. - The loading of figure 6(b) decomposed into a symmetrical
and an antisymmetrical component.
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- 9@ 3" = 27"

Section A-A

Figure 14. - Corrugated shear web in hinged picture frame test
fixture, used for illustrative example.
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(c) Component modes for dis-
placements in the plane
of the cross section.

Figure 15. - Degrees of freedom of cross-sectional deformation assumed
in the solution of problem I.
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(¢) Component modes for
displacements in the
plane of the cross
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Flgure 16, -~ Degrees of freedom of cross~sectional deformation assumed in the
solution of problem II.
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